3674 Empregos para Machine learning - São Paulo
Machine learning
Publicado há 9 dias atrás
Trabalho visualizado
Descrição Do Trabalho
Estamos em busca de uma pessoa Engenheira de Machine Learning para integrar nossa equipe de Soluções IA e ser responsável por aplicar técnicas de aprendizado de máquina em projetos inovadores, ajudando a construir soluções inteligentes para nossos produtos e clientes.
Se você possui paixão por tecnologia, tem conhecimentos em dados e está em busca de oportunidades para crescer na área, esta é a vaga ideal.
Responsabilidades:
- Projetar, desenvolver e implementar modelos de machine learning para resolver problemas de negócio diversos.
- Automatizar e otimizar processos relacionados ao ciclo de vida de modelos: desde a experimentação, treinamento, deploy até o monitoramento em produção.
- Trabalhar em colaboração com equipes de Ciência de Dados, Engenharia de Dados e Produto, garantindo que os modelos sejam integrados de forma eficiente aos sistemas.
- Garantir a escalabilidade, eficiência e confiabilidade das soluções de machine learning em ambientes de produção.
- Participar da definição de arquiteturas e pipelines de MLOps para automação e governança de modelos.
- Monitorar o desempenho dos modelos e ajustar parâmetros conforme mudanças nos dados e nos objetivos de negócio.
- Documentar soluções, boas práticas e contribuir para a evolução contínua dos processos e padrões técnicos.
- Pesquisar e implementar novas técnicas e ferramentas que impulsionem a inovação em machine learning.
Requisitos:
- Graduação completa ou em andamento em Ciência da Computação, Engenharia, estatística, matemática, ou áreas correlatas.
- Programação em Python ou outras linguagens adequadas para machine learning.
- com bibliotecas e frameworks de machine learning e deep learning (ex.: Scikit-learn, TensorFlow, PyTorch).
- Conhecimento de fundamentos de estatística, aprendizado supervisionado e não supervisionado.
- Experiência com versionamento de código (ex.: Git) e práticas de desenvolvimento de software.
- Noções de deployment e monitoramento de modelos.
Diferenciais:
- Experiência prática com MLOps e ferramentas de automação de pipelines (ex.: MLflow, Kubeflow, Airflow).
- Conhecimento em computação em nuvem (AWS, Azure ou GCP), especialmente serviços de IA/ML.
- Experiência com containers e orquestração (ex.: Docker, Kubernetes).
- Implementação de soluções de machine learning em ambientes de produção com requisitos de escalabilidade e segurança.
- Participação em projetos que envolvam modelos de NLP, visão computacional ou sistemas de recomendação.
Perfil profissional:
- Mentalidade analítica e orientação para a resolução de problemas complexos com pragmatismo.
- Proatividade na busca de soluções e na melhoria contínua de processos e modelos.
- Colaboração ativa com diferentes áreas e habilidades de comunicação clara, tanto para públicos técnicos quanto não técnicos.
- Organização, responsabilidade e atenção aos detalhes na entrega de soluções robustas e seguras.
- Interesse por aprendizado contínuo e atualização em relação às tendências e inovações em machine learning.
Se você se identifica com essa oportunidade, inscreva-se! Nosso processo valoriza competências, potencial e diversidade de experiências.
Machine Learning Engineer (LATAM) AI & Machine Learning · ·
Publicado há 19 dias atrás
Trabalho visualizado
Descrição Do Trabalho
Lateral stands for technology excellence.
We’re a profitable, award-winning design and technology company with over 20 years of experience launching bold ventures and transforming businesses. A globally distributed team of 200+ experts united by a shared purpose: the continuous pursuit of quality.
Our clients come to us for results, quality and craft - and stay because we keep raising the bar.
We do things differently at LateralOur mission is simple:design and build great products .
What sets us apart isn’t just the talent of our team -it’sthe way we work:
We Have A Bias For Action & Results.
We are doers - we spot the gaps, connect the dots, anticipate what’s around the corner and take action. We move fast, stay focused, and let the results -not the effort -speak for themselves.
We Work On Time, On Budget, On Quality
Discipline is our edge - a commitment we make to each other, to our clients, and to the standards we hold ourselves to.
We Care Deeply.
We care about our work and about each other. Care Is A Competitive Advantage.
Every detail matters. Every design, every line of code, every decision. Thoughtful by default.
We Do Things Right -Because It’s the Right Thing to Do
Right over easy. Integrity isn’t up for negotiation. We hold the bar high even when no one’s watching. We take pride in doing great work the right way -not the easy way.
We Keep Improving
The best teams keep improving and we’re never done learning.
We iterate. We reflect on what’s working and what’s not. Feedback fuels us, we receive it openly, and adapt quickly. Progress over perfection.
We’re Obsessed With Agility, Not The Agile Manifesto
We don’t chase dogma or rituals -we chase momentum. We adapt processes to fit problems, not the other way around.
We Take Ownership
Everyone leads something here. You will have room to run with ideas, and the trust to execute. That trust is built on how you show up: thinking things through, sweating the details, and following through.
We leverage cutting-edge machine learning to deliver innovative solutions in medical imaging. As a Machine Learning Engineer at Lateral, you will be instrumental in realizing our AI vision through a variety of critical tasks:
Experimentation and Optimization: You will help parallelize and distribute work amongst different experiment tracks, optimize model performance via hyperparameter tuning, model ensembling, or advanced training strategies, and design and conduct systematic experiments to validate hypotheses and model improvements.
Research and Development: Your responsibilities will include conducting literature reviews on state-of-the-art methods in medical imaging, designing and prototyping novel machine learning models, implementing model architecture and training strategies in code, and generating ideas and exploring methods for improvements to existing models or tasks.
Analysis and Validation: You will perform statistical analysis to assess model robustness and reproducibility, and compare proposed methods against baselines and benchmarks from existing literature.
Interdisciplinary Collaboration: You will collaborate with domain experts to define problem statements and interpret model outputs, ensuring our AI solutions are both technically sound and clinically impactful.
We’re seeking research-minded engineers who are excited to build real, meaningful ML systems, not just prototypes. You’ll thrive in this role if you bring:
2+ years of hands-on experience in machine learning, including model design, training, and evaluation.
Demonstrated experience applying machine learning to real-world computer vision problems, including developing, deploying, and optimizing models.
Familiarity with deep learning frameworks such as PyTorch or TensorFlow and comfort writing clean, modular experimentation code.
Practical experience running experiments, tuning models, and comparing approaches via systematic validation.
Excellent grasp of modern ML concepts: regularization, loss functions, optimization strategies, generalization, overfitting, etc.
Basic data analysis skills using tools like Polars or Pandas for efficient data manipulation and exploratory data analysis.
An understanding of statistical testing and experimental design to assess performance, robustness, and reproducibility.
Curiosity about new techniques — you enjoy staying current with ML literature and applying ideas in production-minded ways.
Strong communication skills — able to collaborate with other engineers, researchers, and domain experts to translate needs into solutions.
Bonus points for:
Experience with medical imaging, scientific ML, or regulated environments.
Contributions to papers, open-source projects, or research infrastructure.
Familiarity with explainability techniques (e.g., SHAP, saliency maps) and fairness/audit frameworks.
A track record of generating novel ideas, exploring them rigorously, and translating them into working systems.
Experience building ML pipelines (training, evaluation, deployment) in production, especially in cloud environments like AWS.
Real Impact: You’ll work on meaningful products that make a measurable difference - from healthcare and commerce to sustainability and next-gen tech.
Remote-First, Office Friendly: Work from wherever you’re most productive - whether that’s your home, a co-working space, or one of our offices. We’re a remote-first company, but if you’re near an office, you’re welcome to drop in, collaborate in person, or work onsite regularly.
We prioritize async collaboration, respect your time zone, and focus on outcomes over hours.
An Outstanding Team: Talented, kind, and hard-working people who care deeply about their craft - and about each other. No egos. No politics. Just professionals doing their best work.
Growth: You’ll be supported in growing your craft, exploring new paths, and stepping into greater responsibility -at your own pace
A Culture of Excellence: We care deeply about doing the right thing -for our clients, our team, and ourselves. No burnout. No crunch. Just high-quality work, delivered sustainably.
Variety & Stability: We’re profitable, independent, and over a decade strong. Yet every project brings a fresh challenge. You’ll never be bored here.
We want to respect your time by being clear about what this role isn’t. You should skip this opportunity if:
You prefer well defined structure. If you gravitate towards a clear hierarchy, well defined roles and swim lanes, you may find our self-managed style challenging.
Distributed work isn’t your thing. If you find async communication, design documentation and being proactive without a manager nearby difficult, our setup won’t suit you.
Feedback doesn't excite you. We’re obsessed with quality and believe in continuous improvement. That means we give feedback that’s sometimes nitpicky. If refining the work until it’s excellent feels over the top, you are likely going to find working here frustrating.
Change makes you uncomfortable. We’re scaling and maturing. That means not everything is perfect yet. Priorities shift. Processes evolve. If ambiguity is uncomfortable, this may feel bumpy.
However, If this sounds like fuel, we’d love to talk!
How to apply and what to expect in the interview processOur hiring process is structured as a sequence of steps. Moving forward is based on how well the previous step goes. This helps us stay focused, fair, and respectful of everyone’s time.
We will always:
Let you know clearly what the next step is
Share updates and feedback wherever possible
Invite questions if anything feels unclear
Not everyone progresses through every stage. That doesn’t mean you’re not great at what you do. Sometimes it’s about timing, team fit, or simply what we’re looking for at the moment.
Step 1: Express Your InterestIf this sounds like your kind of team and you’re ready to bring your craft to Lateral, we want to hear from you.
Please send us:
Yourresume
Ashort note about what excites you about this role
Links to your work : GitHub/ Code snippets, portfolio, architecture /design docs, blog posts, oranything that shows us how you think and build
Please don’t include anything sensitive or proprietary.
If you’re sharing team projects, let us know what your specific contributions were.
We review every application with care. If there’s a fit, we’ll reach out to schedule next steps.
Step 2: Talent Partner ConversationPurpose: A structured discussion with our People Experience team to delve into your career trajectory, motivations, and alignment with Lateral's values.
What to Expect:
In-depth questions about your past experiences and decision-making processes.
Exploration of your career goals and how they align with the role.
Discussion about our company culture, availability, compensation and other logistics
Motivators and demotivators.
Your life outside coding.
Preparation Tips:
Reflect on your career journey and pivotal moments.
Be ready to discuss challenges you've overcome and lessons learned.
Familiarize yourself with the Job Description, Lateral's mission and values.
Purpose: Assess your technical proficiency and problem-solving abilities.
Format: A collaborative session with our engineering team, focusing on real-world scenarios relevant to the role.
What to Expect:
Problem-solving exercises/questions that mirror tasks you'd encounter in the position.
Discussions around your approach, reasoning, and solutions.
Preparation Tips:
Practice articulating your thought process clearly and concisely.
Be prepared to discuss in depth past projects and the technologies used.
Purpose: Evaluate how well you collaborate, communicate, and consult with external stakeholders.
Format: A live conversation with one of our client-side collaborators
What to Expect:
Discussion around business and technical challenges from the client’s perspective.
Opportunity to explain your approach, gather requirements, ask clarifying questions, and articulate tradeoffs.
Evaluation of how clearly you communicate solutions to both technical and non-technical stakeholders.
Preparation Tips:
Once client details are shared, educate yourself with their business and potential challenges
Review past experiences where you’ve had to communicate complex ideas clearly.
Reflect on your ability to lead conversations, guide decision-making, and build trust across different audiences.
Purpose: Understand your approach to prioritizing, collaborating, shipping, and iterating.
What to expect:
How you prioritize and break down work.
How you collaborate across disciplines.
How you handle blockers, feedback, and iteration.
Preparation Tips:
Pick 1-2 meaningful projects you led or heavily contributed to.
Walk through your process: what worked, what didn’t, what you’d do differently.
Think about how you manage time, scope, and changing requirements.
Purpose: We believe references are about understanding, not just validation. We do not look for perfection, but to understand patterns, strengths, and context. We use them to learn how to support you best.
What to Expect: we’ll ask you for 2–3 people who’ve worked closely with you. These are often: former managers, senior peers or collaborators, mentors or people you've mentored.
What we ask: We focus on how you’ve grown, where you shine, how you like to be led, and what support sets you up for success. We want practical advice for making this a great fit for you.
Yes, we do backchannels too: We do thiswhen we feel we need more context . We will check with you if there are folks we should avoid reaching out due to confidentiality or other reasons. Andhere’s our commitment: if anything surprising or unclear comes up in a backchannel, we’ll bring it directly to you. We believe in “no stories without you in the room .” You’ll always get the chance to share your side, context, or clarification.
Step 7: OfferWhat Happens: If selected, you'll receive a comprehensive offer detailing compensation, and other pertinent information.
Our hiring process is designed to be thorough yet respectful, ensuring a mutual fit. We encourage candidates to engage actively, ask questions, and view this as a two-way exploration.
Join us and let’s build something extraordinary.
#J-18808-LjbffrMachine Learning Engineer
Publicado há 2 dias atrás
Trabalho visualizado
Descrição Do Trabalho
Come to one of the biggest IT Services companies in the world! Here you can transform your career!
Why to join TCS? Here at TCS we believe that people make the difference, that's why we live a culture of unlimited learning full of opportunities for improvement and mutual development. The ideal scenario to expand ideas through the right tools, contributing to our success in a collaborative environment.
We are looking for Machine Learning Engineer (MLOps) who wants to learn and transform his career.
In this role you will:
- Proven experience in MLOps
- Hands-on experience with AWS
- Kubernetes for container orchestration
- MLFlow for experiment/model management
- Argus
- Kedro for pipeline orchestration
- Experience with databases (preferably Redshift or other relational database)
- Knowledge of code versioning and CI/CD processes (Jenkins, or similar)
- Strong documentation skills and ability to communicate clearly with both technical and non-technical stakeholders
And much better if you stand out for:
- Agile
Key Responsibilities:
- Deploy, automate, and monitor machine learning models in production environments.
- Develop and maintain data and model pipelines using MLOps tools.
- Provide technical support to the Data Science team, promoting best practices in Machine Learning Engineering and DevOps.
- Evolve and maintain the internal MLOps framework.
- Ensure the security, performance, and scalability of the implemented solutions.
Key Words:
MLOps; AWS, English
<<
What do we offer?
- TCS Benefits – Brazil:
- Health insurance
- Dental Plan
- Life insurance
- Transportation vouchers
- Meal/Food Voucher
- Childcare assistance
- Gympass
- TCS Cares – free 0800 that provides psychological assistance (24 hrs/day), legal, social and financial assistance to associates
- Partnership with SESC
- Reimbursement of Certifications
- Free TCS Learning Portal – Online courses and live training
- International experience opportunity
- Discount Partnership with Universities and Language Schools
- Bring Your Buddy – By referring people you become eligible to receive a bonus for each hire
- TCS Gems – Recognition for performance
- Xcelerate – Free Mentoring Career Platform
- Tata Consultancy Services is an equal opportunity employer, our commitment to diversity & inclusion drives our efforts to provide equal opportunity to all candidates who meet our required knowledge & competency needs, irrespective of any socio-economic background, race, color, national origin, religion, sex, gender identity/expression , age, marital status, disability, sexual orientation or any others. We encourage anyone interested to build a career in TCS to participate in our recruitment & selection process.
- At Tata Consultancy Services we promote an inclusive culture, we always work for equity. This applies to Gender, People with Disabilities, LGBTQIA+, Religion, Race, Ethnicity. All our opportunities are based on these principles. We think of different actions of inclusion and social responsibility, in order to build a TCS that respects each person. Our motto is Inclusion without exception.
At TATA Consultancy Services we promote an inclusive culture, we always work for equity. This applies to Gender, People with Disabilities, LGBTQIA+, Religion, Race, Ethnicity. All our opportunities are based on these principles. We think of different actions of inclusion and social responsibility, in order to build a TCS that respects individuality. Come to be a TCSer!
#Buildingonbelief
- RGS -
Machine Learning Engineer
Publicado há 4 dias atrás
Trabalho visualizado
Descrição Do Trabalho
Data Science at TRACTIAN
The Data Science team at TRACTIAN focuses on extracting valuable insights from vast amounts of industrial data. Using advanced statistical methods, algorithms, and data visualization techniques, this team transforms raw data into actionable intelligence that drives decision-making across engineering, product development, and operational strategies. The team constantly works on optimizing prediction models, identifying trends, and providing data-driven solutions that directly enhance the company’s operational efficiency and the quality of its products.
What you’ll do
We’re hiring a Mid-Level Machine Learning Engineer to bridge the gap between data science and production systems. You’ll own end-to-end deployment of machine learning models, work with real-time sensor data, and build reliable services that power diagnostics for industrial equipment. This is a hands-on role with real impact, ideal for engineers who want to grow their systems design and ML Ops skills.
Responsibilities- Deploy and maintain ML models from the data science team
- Design and implement APIs and real-time inference services
- Work with large-scale time-series datasets from vibration and sensor systems
- Improve the performance and reliability of model serving pipelines
- Monitor system health and implement logging, alerting, and fallback mechanisms
- Contribute to architectural decisions and collaborate across teams
- 2–4 years of experience in software or machine learning engineering
- Bachelor’s degree in Computer Science, Engineering, or related technical field
- Solid background in math, statistics, and machine learning concepts
- Strong Python skills and experience with ML libraries like scikit-learn or PyTorch
- Experience deploying models in production environments
- Familiarity with event-driven platforms and message queues (e.g., Kafka, Redis Streams)
- Comfort working with streaming or time-series data
- Experience with containerization (Docker) and cloud deployment
- Exposure to real-time or low-latency systems
- Interest in optimization of inference latency and resource usage
- Programming: Python, Golang
- ML Libraries: scikit-learn, PyTorch, TensorFlow
- Backend: FastAPI, Flask
- Infrastructure: Kafka, Redis, PostgreSQL, Docker
- ML Ops: Model serving, monitoring, CI/CD pipelines
Machine Learning Engineer
Publicado há 5 dias atrás
Trabalho visualizado
Descrição Do Trabalho
Join to apply for the Machine Learning Engineer role at Ábaco Consulting
4 days ago Be among the first 25 applicants
Join to apply for the Machine Learning Engineer role at Ábaco Consulting
DESCRIÇÃO
Inglês Avançado
Estamos em busca de um Machine Learning Engineer (MLE) para atuar na interseção entre aprendizado de máquina/aprendizado profundo, tecnologia de nuvem e arquitetura de microsserviços. Você aplicará as melhores práticas de MLOps, incluindo versionamento de código e dados, além da implementação de modelos em produção. Além disso, terá a oportunidade de desenvolver novos recursos do produto, influenciar decisões de engenharia e contribuir para a evolução da arquitetura tecnológica. Seu trabalho envolverá a construção de código escalável e bem documentado, revisão de código e design, além de otimizar desempenho e confiabilidade dos sistemas.
Responsabilidades
- Você trabalhará na interseção da aplicação de soluções de aprendizado de máquina/aprendizado profundo, usando as melhores tecnologias de nuvem e arquitetura de microsserviços.
- Utilizar as melhores práticas de MLOps, incluindo serviço de modelo, controle de versão de dados e código.
- Criar e implantar novos recursos do produto do início ao fim, incluindo desenvolver e lançar novos modelos em produção.
- Revisar e influenciar o projeto de engenharia, arquitetura e tecnologia de vários produtos.
- Construir código para produção, seguindo padrões de design e estilo de código.
- Documentar processos e criar artefatos compartilháveis.
- Revisar a qualidade do código e do design de colegas.
- Melhorar desempenho e confiabilidade do sistema.
- Desenvolver ferramentas internas para aumentar a produtividade.
- Colaborar com a equipe para manter alta qualidade de código.
- Orientar e treinar membros juniores.
Qualificações
- Proficiência com pandas, numpy, scipy, scikit-learn, statsmodels, tensorflow.
- Bacharel em engenharia ou áreas relacionadas.
- Boa compreensão de computação estatística e processamento paralelo.
- Experiência com tensorflow avançado distribuído, numpy, numba, cudf, cupy, mpi, joblib.
- Conhecimento de gerenciamento de memória e processamento paralelo em Python.
- Familiaridade com MKL, BLAS, LLVM, Ray.
- Forte em codificação Python e uso de IDEs como VSC ou PyCharm.
- Experiência com controle de versão usando Git.
- Experiência em ambientes ágeis, nuvem pública, APIs RESTful e conteinerização.
- Sólida base em estruturas de dados e algoritmos.
- Experiência com arquitetura de microsserviços, design orientado a domínio, serviços RESTful e conteinerização Docker.
Atuação: Campinas - SP.
- Local de trabalho: Campinas, SP
- Regime de contratação: PJ
- Jornada: Período integral
- Nível: Mid-Senior
REQUISITOS
Ensino superior completo
VALORIZADO
Experiência entre 5 e 10 anos
Senioridade- Mid-Senior level
- Full-time
- Engenharia e Tecnologia da Informação
- Serviços de TI e Consultoria de TI
Machine Learning Engineer
Publicado há 6 dias atrás
Trabalho visualizado
Descrição Do Trabalho
Prazer, somos a Huna!
- Deeptech brasileira construindo o futuro do diagnóstico precoce de câncer para 99% da humanidade usando inteligência artificial e exames de rotina!
:) Construímos tecnologias robustas, éticas e responsáveis para ampliar o acesso à saúde… e que bom que você quer fazer parte dessa trajetória com a gente!
:) Estamos contratando para vaga de PESSOA ENGENHEIRA DE MACHINE LEARNING (MLOps) (Pleno) - até dia 21 de Março!
Esta é uma vaga full-time e remote-first , com preferência para candidatos baseados em São Paulo (Capital e RM) e Rio de Janeiro.
É importante ter disponibilidade para viagens ocasionais (e alguns eventos nas sedes da empresa em ambas cidades).
- Pesquisar e implementar algoritmos e ferramentas de Machine Learning apropriados para resolver problemas específicos na área da saúde, como diagnóstico auxiliado por IA, previsão de riscos, personalização de tratamentos e análise de imagens médicas;
- Desenvolver aplicações de Machine Learning de acordo com os requisitos, utilizando linguagens de programação como Python e bibliotecas como TensorFlow, PyTorch e Scikit-learn;
- Estudar e transformar protótipos de ciência de dados em soluções escaláveis e robustas;
- Ampliar bibliotecas e estruturas de ML existentes para atender às necessidades específicas das aplicações;
- Selecionar conjuntos de dados apropriados para treinar os modelos de Machine Learning, realizando a limpeza, a transformação e a preparação dos dados;
- Escolher métodos de representação de dados eficazes para otimizar o desempenho dos modelos;
- Realizar análises estatísticas e ajustes finos nos modelos, utilizando resultados de testes para melhorar a acurácia e a eficiência;
- Treinar e retreinar os sistemas de Machine Learning quando necessário, utilizando técnicas de aprendizado supervisionado, não supervisionado e por reforço;
- Otimizar os modelos para garantir o desempenho, a escalabilidade e a eficiência em ambientes de produção.
- Formação em Ciência da Computação, Engenharia, Estatística ou áreas correlatas.
- Experiência mínima de 2 (dois) anos na função.
- Experiência com linguagens de programação como Python e bibliotecas de Machine Learning como TensorFlow, PyTorch e Scikit-learn.
- Inglês avançado.
- Conhecimento de algoritmos de Machine Learning, como regressão, classificação, clustering e deep learning.
- Habilidade em processar e analisar grandes conjuntos de dados.
- Familiaridade com ferramentas de controle de versão, como Git.
- Disponibilidade para viagens eventuais.
- Pós-Graduação (Mestrado ou Doutorado - completa ou em andamento) em áreas correlatas.
- Conhecimento de processamento de linguagem natural (PNL) ou visão computacional.
- Familiaridade com plataformas de cloud computing, especialmente GCP, AWS ou Azure.
- Experiência prévia (acadêmica ou profissional) com manipulação de dados clínicos/médicos e/ou vivência no setor de saúde.
- Remuneração compatível com o mercado.
- Benefício flexível (Caju).
- Benefício de saúde (Gympass).
- Benefício de educação.
- Possibilidade de participar de programa de S.O.P.
- Rotina remote-first (remoto preferencial).
- Short-Fridays.
- Flexibilidade de horários na rotina.
- Day-off de aniversário.
- Emendas de feriados nacionais.
> Se você acha que essa vaga é a sua cara, inscreva-se na vaga diretamente pelo ou por email ***.
> Se conhece alguém que se encaixa no perfil, compartilhe!
LEMBRETE: O prazo vai até dia 21 de Março.
Somente candidatos selecionados receberão feedback para as próximas etapas.
:)
Machine Learning Engineer
Publicado há 6 dias atrás
Trabalho visualizado
Descrição Do Trabalho
Prazer, somos a Huna!
- Deeptech brasileira construindo o futuro do diagnóstico precoce de câncer para 99% da humanidade usando inteligência artificial e exames de rotina!
:) Construímos tecnologias robustas, éticas e responsáveis para ampliar o acesso à saúde… e que bom que você quer fazer parte dessa trajetória com a gente!
:) Estamos contratando para vaga de PESSOA ENGENHEIRA DE MACHINE LEARNING (MLOps) (Pleno) - até dia 21 de Março!
Esta é uma vaga full-time e remote-first , com preferência para candidatos baseados em São Paulo (Capital e RM) e Rio de Janeiro.
É importante ter disponibilidade para viagens ocasionais (e alguns eventos nas sedes da empresa em ambas cidades).
- Pesquisar e implementar algoritmos e ferramentas de Machine Learning apropriados para resolver problemas específicos na área da saúde, como diagnóstico auxiliado por IA, previsão de riscos, personalização de tratamentos e análise de imagens médicas;
- Desenvolver aplicações de Machine Learning de acordo com os requisitos, utilizando linguagens de programação como Python e bibliotecas como TensorFlow, PyTorch e Scikit-learn;
- Estudar e transformar protótipos de ciência de dados em soluções escaláveis e robustas;
- Ampliar bibliotecas e estruturas de ML existentes para atender às necessidades específicas das aplicações;
- Selecionar conjuntos de dados apropriados para treinar os modelos de Machine Learning, realizando a limpeza, a transformação e a preparação dos dados;
- Escolher métodos de representação de dados eficazes para otimizar o desempenho dos modelos;
- Realizar análises estatísticas e ajustes finos nos modelos, utilizando resultados de testes para melhorar a acurácia e a eficiência;
- Treinar e retreinar os sistemas de Machine Learning quando necessário, utilizando técnicas de aprendizado supervisionado, não supervisionado e por reforço;
- Otimizar os modelos para garantir o desempenho, a escalabilidade e a eficiência em ambientes de produção.
- Formação em Ciência da Computação, Engenharia, Estatística ou áreas correlatas.
- Experiência mínima de 2 (dois) anos na função.
- Experiência com linguagens de programação como Python e bibliotecas de Machine Learning como TensorFlow, PyTorch e Scikit-learn.
- Inglês avançado.
- Conhecimento de algoritmos de Machine Learning, como regressão, classificação, clustering e deep learning.
- Habilidade em processar e analisar grandes conjuntos de dados.
- Familiaridade com ferramentas de controle de versão, como Git.
- Disponibilidade para viagens eventuais.
- Pós-Graduação (Mestrado ou Doutorado - completa ou em andamento) em áreas correlatas.
- Conhecimento de processamento de linguagem natural (PNL) ou visão computacional.
- Familiaridade com plataformas de cloud computing, especialmente GCP, AWS ou Azure.
- Experiência prévia (acadêmica ou profissional) com manipulação de dados clínicos/médicos e/ou vivência no setor de saúde.
- Remuneração compatível com o mercado.
- Benefício flexível (Caju).
- Benefício de saúde (Gympass).
- Benefício de educação.
- Possibilidade de participar de programa de S.O.P.
- Rotina remote-first (remoto preferencial).
- Short-Fridays.
- Flexibilidade de horários na rotina.
- Day-off de aniversário.
- Emendas de feriados nacionais.
> Se você acha que essa vaga é a sua cara, inscreva-se na vaga diretamente pelo ou por email ***.
> Se conhece alguém que se encaixa no perfil, compartilhe!
LEMBRETE: O prazo vai até dia 21 de Março.
Somente candidatos selecionados receberão feedback para as próximas etapas.
:)
Seja o primeiro a saber
Sobre o mais recente Machine learning Empregos em São Paulo !
Machine Learning Engineer
Publicado há 6 dias atrás
Trabalho visualizado
Descrição Do Trabalho
Prazer, somos a Huna!
- Deeptech brasileira construindo o futuro do diagnóstico precoce de câncer para 99% da humanidade usando inteligência artificial e exames de rotina!
:) Construímos tecnologias robustas, éticas e responsáveis para ampliar o acesso à saúde… e que bom que você quer fazer parte dessa trajetória com a gente!
:) Estamos contratando para vaga de PESSOA ENGENHEIRA DE MACHINE LEARNING (MLOps) (Pleno) - até dia 21 de Março!
Esta é uma vaga full-time e remote-first , com preferência para candidatos baseados em São Paulo (Capital e RM) e Rio de Janeiro.
É importante ter disponibilidade para viagens ocasionais (e alguns eventos nas sedes da empresa em ambas cidades).
- Pesquisar e implementar algoritmos e ferramentas de Machine Learning apropriados para resolver problemas específicos na área da saúde, como diagnóstico auxiliado por IA, previsão de riscos, personalização de tratamentos e análise de imagens médicas;
- Desenvolver aplicações de Machine Learning de acordo com os requisitos, utilizando linguagens de programação como Python e bibliotecas como TensorFlow, PyTorch e Scikit-learn;
- Estudar e transformar protótipos de ciência de dados em soluções escaláveis e robustas;
- Ampliar bibliotecas e estruturas de ML existentes para atender às necessidades específicas das aplicações;
- Selecionar conjuntos de dados apropriados para treinar os modelos de Machine Learning, realizando a limpeza, a transformação e a preparação dos dados;
- Escolher métodos de representação de dados eficazes para otimizar o desempenho dos modelos;
- Realizar análises estatísticas e ajustes finos nos modelos, utilizando resultados de testes para melhorar a acurácia e a eficiência;
- Treinar e retreinar os sistemas de Machine Learning quando necessário, utilizando técnicas de aprendizado supervisionado, não supervisionado e por reforço;
- Otimizar os modelos para garantir o desempenho, a escalabilidade e a eficiência em ambientes de produção.
- Formação em Ciência da Computação, Engenharia, Estatística ou áreas correlatas.
- Experiência mínima de 2 (dois) anos na função.
- Experiência com linguagens de programação como Python e bibliotecas de Machine Learning como TensorFlow, PyTorch e Scikit-learn.
- Inglês avançado.
- Conhecimento de algoritmos de Machine Learning, como regressão, classificação, clustering e deep learning.
- Habilidade em processar e analisar grandes conjuntos de dados.
- Familiaridade com ferramentas de controle de versão, como Git.
- Disponibilidade para viagens eventuais.
- Pós-Graduação (Mestrado ou Doutorado - completa ou em andamento) em áreas correlatas.
- Conhecimento de processamento de linguagem natural (PNL) ou visão computacional.
- Familiaridade com plataformas de cloud computing, especialmente GCP, AWS ou Azure.
- Experiência prévia (acadêmica ou profissional) com manipulação de dados clínicos/médicos e/ou vivência no setor de saúde.
- Remuneração compatível com o mercado.
- Benefício flexível (Caju).
- Benefício de saúde (Gympass).
- Benefício de educação.
- Possibilidade de participar de programa de S.O.P.
- Rotina remote-first (remoto preferencial).
- Short-Fridays.
- Flexibilidade de horários na rotina.
- Day-off de aniversário.
- Emendas de feriados nacionais.
> Se você acha que essa vaga é a sua cara, inscreva-se na vaga diretamente pelo ou por email ***.
> Se conhece alguém que se encaixa no perfil, compartilhe!
LEMBRETE: O prazo vai até dia 21 de Março.
Somente candidatos selecionados receberão feedback para as próximas etapas.
:)
Machine Learning Engineer
Publicado há 6 dias atrás
Trabalho visualizado
Descrição Do Trabalho
Base pay range
Company overview: Blue Orange Digital is a boutique data & AI consultancy that delivers enterprise-grade results. We design and build modern data platforms, analytics, and ML/AI Agent solutions for mid‑market and enterprise clients across Private Equity, Financial Services, Healthcare, and Retail. Our teams work with technologies like Databricks, Snowflake, dbt, and the broader Microsoft ecosystem to turn messy, real-world data into trustworthy, actionable insight. We’re a builder-led, client-first culture that prizes ownership, clear communication, and shipping high-impact work.
Position overviewBlue Orange is seeking to expand our Team of expert consultants with an experienced Machine Learning Engineer to address a set of expanding opportunities in the next several months. The ideal candidate will possess a deep passion for machine learning, AI tech and innovative data solutions with proficiency in advanced machine learning techniques, strong skills in programming languages such as Python, expertise around data analytics and feature engineering, experience working with some of the main ML and DL frameworks, a proven track record of working with cloud-native solutions in at least 1 of the main clouds (AWS, GCP, Azure, or Snowflake, etc.), MLOps and LLMs, and strong proficiency in the end-to-end ML/AI cycle, from ideation to production. The candidate will play a crucial role in driving our machine-learning initiatives forward. The candidate will have excellent communication skills to collaborate with technical and non-technical stakeholders effectively. At Blue Orange, you''ll have the opportunity to work on cutting-edge projects, leveraging modern machine-learning and AI techniques to deliver tangible business outcomes and drive innovation in our data-driven solutions.
Responsibilities- Collaborate with cross-functional teams to understand business requirements and design to productionize Gen AI solutions into practical product driven applications.
- Design and implement application integrations to leverage newly built GenAI Products.
- Build solutions that improve delivery speed and scalability of product pipelines.
- Leverage managed and serverless cloud offerings to create performant and scalable cloud native application solutions and data pipelines.
- Experiment with retrieval-augmented generation (RAG) approaches to improve the relevance and coherence of AI-generated outputs.
- Work closely with GenAI engineers and researchers to integrate prompt engineering and RAG components into production systems and ensure seamless deployment.
- Stay up to date with the latest advancements in prompt engineering, RAG, data science, machine learning, and AI technologies, and explore innovative approaches to enhance Gen AI capabilities.
- Experience with NLP and LLM-based technologies and frameworks.
- Proficiency in programming languages such as Python and JavaScript is preferred.
- Proven track record of successful delivery of software engineering projects.
- Ability to think and learn on your feet, and the ability to quickly become proficient with new technologies in a fast-paced environment.
- Understanding and passion for Test Driven Design.
- Familiarity with ETL concepts and best practices.
- Experience with prompt engineering and RAG techniques preferred.
- Excellent problem-solving skills, critical thinking abilities, and attention to detail.
- Effective communication skills and the ability to collaborate effectively in a team environment.
- Passion for AI and a desire to contribute to the advancement of Gen AI technologies.
- Strong problem-solving and analytical skills.
- Self-driven and autonomous.
- Excellent verbal and written communication skills.
- Team player.
- Eagerness to learn and adapt in a fast-paced environment.
- 5+ years of industry experience as a hands-on practitioner of software engineering and proven experience with cloud offerings.
- 3+ years of experience with cloud platforms such as AWS.
- Experience with Docker preferred.
- Bachelor's degree or higher in Computer Science or a related field.
- Advanced degree in a relevant field.
- Publications in relevant AI/ML communities and journals.
- Experience fine-tuning OpenSource LLMs and deploying them.
- MLFlow, etc., a plus.
- Fully remote
- Flexible Schedule
- Unlimited Paid Time Off (PTO)
- Paid parental/bereavement leave
- Worldwide recognized clients to build skills for an excellent resume
- Top-notch team to learn and grow with
Salary: USD $7,454 - $9,486 (monthly salary range)
Background checks may be required for certain positions/projects.
Blue Orange Digital is an equal opportunity employer.
#J-18808-LjbffrMachine Learning Engineer
Publicado há 6 dias atrás
Trabalho visualizado
Descrição Do Trabalho
Employment type:
B2B
Operating mode:
Remote
Location:
We help companies gain a competitive edge by delivering customized AI solutions. Our mission is to empower our clients to unlock the full potential of AI.
We are specialized in key technologies such as LLM & RAG, MLOps, Edge Solutions, Computer Vision, and Natural Language Processing.
Our team of 120 world-class AI experts has worked on 200+ commercial and R&D projects with companies such as Unstructured, Google, Brainly, DocPlanner, B-Yond, Zebra Technologies, Hexagon, and many more.
What we believe in?- Team Strength – sharing and exchanging knowledge is key to our daily work
- Accountability – we take responsibility for the tasks entrusted to us so that ultimately the client receives the best possible quality
- Balance – we value work-life balance
- Commitment – we want you to be fully part of the team
- Openness – we don’t want you to be locked into one solution, we want to look for alternatives, explore new possibilities
Join our dynamic team as a Machine Learning Engineer and embark on a journey of innovation at the intersection of data science and cloud computing. We are seeking a talented individual who is passionate about leveraging cutting-edge technologies to drive business insights and solutions. If you’re excited about pushing the boundaries of what’s possible with GenAI, we invite you to be part of our team of experts!
- Collaborate with data scientists and software engineers to integrate machine learning solutions into cloud-based applications.
- Continuously optimize and improve AI algorithms for performance and accuracy in a cloud environment.
- Automate and optimize model deployment following MLOps best practices.
- Engage in the development of cutting-edge Kubernetes-driven infrastructure.
- Work on system reliability and backend stability, always looking for details to be improved.
- Share knowledge through talks and workshops (internal and external).
- Bachelor’s or advanced degree in Computer Science or Engineering.
- Proven experience (3+ years) in software engineering, including experience with Python, Bash, Git, as well as Cloud services, and Linux.
- Proven experience (1+ years) in working with cloud (AWS/Azure preferred).
- Good understanding of system architecture (microservices, monoliths, REST API, DNS, caching).
- Familiarity with Docker, Kubernetes, and cloud platforms for ML deployment.
- Strong Python skills and familiarity with other object-oriented languages.
- Very effective communication skills, both written and verbal.
- Ability to solve problems and communicate complex ideas effectively.
- Basic understanding of machine learning algorithms.
- Keen interest for Generative AI and Large Language Models (LLMs).
- Previous startup experience.
- Opportunity to work on cutting-edge AI projects with a diverse range of clients and industries, driving solutions from development to production.
- Collaborative and supportive work environment, where you can grow and learn from a team of talented professionals.
- An opportunity to participate in conferences and workshops.
- An opportunity to participate in Tech Talks (internal training and seminar sessions).
- Remote work options and travel to European headquarters available.
- Medical package.
- Multisport cards.
- Lunch provided.
- Kitchens stocked with fruit and veggies twice a week.
- Monthly integration budget.
- Company library (online and offline).
- Fun room.