0 Empregos para Machine Learning - Brasil

Machine learning

São Paulo, São Paulo Stocci

Ontem

Trabalho visualizado

Toque novamente para fechar

Descrição Do Trabalho

Estamos em busca de uma pessoa Engenheira de Machine Learning para integrar nossa equipe de Soluções IA e ser responsável por aplicar técnicas de aprendizado de máquina em projetos inovadores, ajudando a construir soluções inteligentes para nossos produtos e clientes.

Se você possui paixão por tecnologia, tem conhecimentos em dados e está em busca de oportunidades para crescer na área, esta é a vaga ideal.

Responsabilidades:

  • Projetar, desenvolver e implementar modelos de machine learning para resolver problemas de negócio diversos.
  • Automatizar e otimizar processos relacionados ao ciclo de vida de modelos: desde a experimentação, treinamento, deploy até o monitoramento em produção.
  • Trabalhar em colaboração com equipes de Ciência de Dados, Engenharia de Dados e Produto, garantindo que os modelos sejam integrados de forma eficiente aos sistemas.
  • Garantir a escalabilidade, eficiência e confiabilidade das soluções de machine learning em ambientes de produção.
  • Participar da definição de arquiteturas e pipelines de MLOps para automação e governança de modelos.
  • Monitorar o desempenho dos modelos e ajustar parâmetros conforme mudanças nos dados e nos objetivos de negócio.
  • Documentar soluções, boas práticas e contribuir para a evolução contínua dos processos e padrões técnicos.
  • Pesquisar e implementar novas técnicas e ferramentas que impulsionem a inovação em machine learning.

Requisitos:

  • Graduação completa ou em andamento em Ciência da Computação, Engenharia, estatística, matemática, ou áreas correlatas.
  • Programação em Python ou outras linguagens adequadas para machine learning.
  • com bibliotecas e frameworks de machine learning e deep learning (ex.: Scikit-learn, TensorFlow, PyTorch).
  • Conhecimento de fundamentos de estatística, aprendizado supervisionado e não supervisionado.
  • Experiência com versionamento de código (ex.: Git) e práticas de desenvolvimento de software.
  • Noções de deployment e monitoramento de modelos.

Diferenciais:

  • Experiência prática com MLOps e ferramentas de automação de pipelines (ex.: MLflow, Kubeflow, Airflow).
  • Conhecimento em computação em nuvem (AWS, Azure ou GCP), especialmente serviços de IA/ML.
  • Experiência com containers e orquestração (ex.: Docker, Kubernetes).
  • Implementação de soluções de machine learning em ambientes de produção com requisitos de escalabilidade e segurança.
  • Participação em projetos que envolvam modelos de NLP, visão computacional ou sistemas de recomendação.

Perfil profissional:

  • Mentalidade analítica e orientação para a resolução de problemas complexos com pragmatismo.
  • Proatividade na busca de soluções e na melhoria contínua de processos e modelos.
  • Colaboração ativa com diferentes áreas e habilidades de comunicação clara, tanto para públicos técnicos quanto não técnicos.
  • Organização, responsabilidade e atenção aos detalhes na entrega de soluções robustas e seguras.
  • Interesse por aprendizado contínuo e atualização em relação às tendências e inovações em machine learning.

Se você se identifica com essa oportunidade, inscreva-se! Nosso processo valoriza competências, potencial e diversidade de experiências.

Desculpe, este trabalho não está disponível em sua região

Machine Learning Engineer (LATAM) AI & Machine Learning · ·

São Paulo, São Paulo Lateralgroup

Publicado há 22 dias atrás

Trabalho visualizado

Toque novamente para fechar

Descrição Do Trabalho

About the Company

Lateral stands for technology excellence.

We’re a profitable, award-winning design and technology company with over 20 years of experience launching bold ventures and transforming businesses. A globally distributed team of 200+ experts united by a shared purpose: the continuous pursuit of quality.

Our clients come to us for results, quality and craft - and stay because we keep raising the bar.

We do things differently at Lateral

Our mission is simple:design and build great products .
What sets us apart isn’t just the talent of our team -it’sthe way we work:

We Have A Bias For Action & Results.

We are doers - we spot the gaps, connect the dots, anticipate what’s around the corner and take action. We move fast, stay focused, and let the results -not the effort -speak for themselves.

We Work On Time, On Budget, On Quality

Discipline is our edge - a commitment we make to each other, to our clients, and to the standards we hold ourselves to.

We Care Deeply.

We care about our work and about each other. Care Is A Competitive Advantage.

Every detail matters. Every design, every line of code, every decision. Thoughtful by default.

We Do Things Right -Because It’s the Right Thing to Do

Right over easy. Integrity isn’t up for negotiation. We hold the bar high even when no one’s watching. We take pride in doing great work the right way -not the easy way.

We Keep Improving

The best teams keep improving and we’re never done learning.

We iterate. We reflect on what’s working and what’s not. Feedback fuels us, we receive it openly, and adapt quickly. Progress over perfection.

We’re Obsessed With Agility, Not The Agile Manifesto

We don’t chase dogma or rituals -we chase momentum. We adapt processes to fit problems, not the other way around.

We Take Ownership
Everyone leads something here. You will have room to run with ideas, and the trust to execute. That trust is built on how you show up: thinking things through, sweating the details, and following through.

What You’ll Do

We leverage cutting-edge machine learning to deliver innovative solutions in medical imaging. As a Machine Learning Engineer at Lateral, you will be instrumental in realizing our AI vision through a variety of critical tasks:

  • Experimentation and Optimization: You will help parallelize and distribute work amongst different experiment tracks, optimize model performance via hyperparameter tuning, model ensembling, or advanced training strategies, and design and conduct systematic experiments to validate hypotheses and model improvements.

  • Research and Development: Your responsibilities will include conducting literature reviews on state-of-the-art methods in medical imaging, designing and prototyping novel machine learning models, implementing model architecture and training strategies in code, and generating ideas and exploring methods for improvements to existing models or tasks.

  • Analysis and Validation: You will perform statistical analysis to assess model robustness and reproducibility, and compare proposed methods against baselines and benchmarks from existing literature.

  • Interdisciplinary Collaboration: You will collaborate with domain experts to define problem statements and interpret model outputs, ensuring our AI solutions are both technically sound and clinically impactful.

What We’re Looking For

We’re seeking research-minded engineers who are excited to build real, meaningful ML systems, not just prototypes. You’ll thrive in this role if you bring:

  • 2+ years of hands-on experience in machine learning, including model design, training, and evaluation.

  • Demonstrated experience applying machine learning to real-world computer vision problems, including developing, deploying, and optimizing models.

  • Familiarity with deep learning frameworks such as PyTorch or TensorFlow and comfort writing clean, modular experimentation code.

  • Practical experience running experiments, tuning models, and comparing approaches via systematic validation.

  • Excellent grasp of modern ML concepts: regularization, loss functions, optimization strategies, generalization, overfitting, etc.

  • Basic data analysis skills using tools like Polars or Pandas for efficient data manipulation and exploratory data analysis.

  • An understanding of statistical testing and experimental design to assess performance, robustness, and reproducibility.

  • Curiosity about new techniques — you enjoy staying current with ML literature and applying ideas in production-minded ways.

  • Strong communication skills — able to collaborate with other engineers, researchers, and domain experts to translate needs into solutions.

Bonus points for:

  • Experience with medical imaging, scientific ML, or regulated environments.

  • Contributions to papers, open-source projects, or research infrastructure.

  • Familiarity with explainability techniques (e.g., SHAP, saliency maps) and fairness/audit frameworks.

  • A track record of generating novel ideas, exploring them rigorously, and translating them into working systems.

  • Experience building ML pipelines (training, evaluation, deployment) in production, especially in cloud environments like AWS.

Why You’ll Love Working Here
  • Real Impact: You’ll work on meaningful products that make a measurable difference - from healthcare and commerce to sustainability and next-gen tech.

  • Remote-First, Office Friendly: Work from wherever you’re most productive - whether that’s your home, a co-working space, or one of our offices. We’re a remote-first company, but if you’re near an office, you’re welcome to drop in, collaborate in person, or work onsite regularly.

    We prioritize async collaboration, respect your time zone, and focus on outcomes over hours.

  • An Outstanding Team: Talented, kind, and hard-working people who care deeply about their craft - and about each other. No egos. No politics. Just professionals doing their best work.

  • Growth: You’ll be supported in growing your craft, exploring new paths, and stepping into greater responsibility -at your own pace

  • A Culture of Excellence: We care deeply about doing the right thing -for our clients, our team, and ourselves. No burnout. No crunch. Just high-quality work, delivered sustainably.

  • Variety & Stability: We’re profitable, independent, and over a decade strong. Yet every project brings a fresh challenge. You’ll never be bored here.

This Role Might Not Be for You

We want to respect your time by being clear about what this role isn’t. You should skip this opportunity if:

  • You prefer well defined structure. If you gravitate towards a clear hierarchy, well defined roles and swim lanes, you may find our self-managed style challenging.

  • Distributed work isn’t your thing. If you find async communication, design documentation and being proactive without a manager nearby difficult, our setup won’t suit you.

  • Feedback doesn't excite you. We’re obsessed with quality and believe in continuous improvement. That means we give feedback that’s sometimes nitpicky. If refining the work until it’s excellent feels over the top, you are likely going to find working here frustrating.

  • Change makes you uncomfortable. We’re scaling and maturing. That means not everything is perfect yet. Priorities shift. Processes evolve. If ambiguity is uncomfortable, this may feel bumpy.

However, If this sounds like fuel, we’d love to talk!

How to apply and what to expect in the interview process

Our hiring process is structured as a sequence of steps. Moving forward is based on how well the previous step goes. This helps us stay focused, fair, and respectful of everyone’s time.

We will always:

  • Let you know clearly what the next step is

  • Share updates and feedback wherever possible

  • Invite questions if anything feels unclear

Not everyone progresses through every stage. That doesn’t mean you’re not great at what you do. Sometimes it’s about timing, team fit, or simply what we’re looking for at the moment.

Step 1: Express Your Interest

If this sounds like your kind of team and you’re ready to bring your craft to Lateral, we want to hear from you.

Please send us:

  • Yourresume

  • Ashort note about what excites you about this role

  • Links to your work : GitHub/ Code snippets, portfolio, architecture /design docs, blog posts, oranything that shows us how you think and build

    Please don’t include anything sensitive or proprietary.
    If you’re sharing team projects, let us know what your specific contributions were.

We review every application with care. If there’s a fit, we’ll reach out to schedule next steps.

Step 2: Talent Partner Conversation

Purpose: A structured discussion with our People Experience team to delve into your career trajectory, motivations, and alignment with Lateral's values.

What to Expect:

  • In-depth questions about your past experiences and decision-making processes.

  • Exploration of your career goals and how they align with the role.

  • Discussion about our company culture, availability, compensation and other logistics

  • Motivators and demotivators.

  • Your life outside coding.

Preparation Tips:

  • Reflect on your career journey and pivotal moments.

  • Be ready to discuss challenges you've overcome and lessons learned.

  • Familiarize yourself with the Job Description, Lateral's mission and values.

Step 3: Technical interview

Purpose: Assess your technical proficiency and problem-solving abilities.
Format: A collaborative session with our engineering team, focusing on real-world scenarios relevant to the role.

What to Expect:

  • Problem-solving exercises/questions that mirror tasks you'd encounter in the position.

  • Discussions around your approach, reasoning, and solutions.

Preparation Tips:

  • Practice articulating your thought process clearly and concisely.

  • Be prepared to discuss in depth past projects and the technologies used.

Step 4: Client interview

Purpose: Evaluate how well you collaborate, communicate, and consult with external stakeholders.

Format: A live conversation with one of our client-side collaborators

What to Expect:

  • Discussion around business and technical challenges from the client’s perspective.

  • Opportunity to explain your approach, gather requirements, ask clarifying questions, and articulate tradeoffs.

  • Evaluation of how clearly you communicate solutions to both technical and non-technical stakeholders.

Preparation Tips:

  • Once client details are shared, educate yourself with their business and potential challenges

  • Review past experiences where you’ve had to communicate complex ideas clearly.

  • Reflect on your ability to lead conversations, guide decision-making, and build trust across different audiences.

Step 5: Operational interview

Purpose: Understand your approach to prioritizing, collaborating, shipping, and iterating.

What to expect:

  • How you prioritize and break down work.

  • How you collaborate across disciplines.

  • How you handle blockers, feedback, and iteration.

Preparation Tips:

  • Pick 1-2 meaningful projects you led or heavily contributed to.

  • Walk through your process: what worked, what didn’t, what you’d do differently.

  • Think about how you manage time, scope, and changing requirements.

Step 6: Reference Checks

Purpose: We believe references are about understanding, not just validation. We do not look for perfection, but to understand patterns, strengths, and context. We use them to learn how to support you best.

What to Expect: we’ll ask you for 2–3 people who’ve worked closely with you. These are often: former managers, senior peers or collaborators, mentors or people you've mentored.

What we ask: We focus on how you’ve grown, where you shine, how you like to be led, and what support sets you up for success. We want practical advice for making this a great fit for you.

Yes, we do backchannels too: We do thiswhen we feel we need more context . We will check with you if there are folks we should avoid reaching out due to confidentiality or other reasons. Andhere’s our commitment: if anything surprising or unclear comes up in a backchannel, we’ll bring it directly to you. We believe in “no stories without you in the room .” You’ll always get the chance to share your side, context, or clarification.

Step 7: Offer

What Happens: If selected, you'll receive a comprehensive offer detailing compensation, and other pertinent information.


Our hiring process is designed to be thorough yet respectful, ensuring a mutual fit. We encourage candidates to engage actively, ask questions, and view this as a two-way exploration.

Join us and let’s build something extraordinary.

#J-18808-Ljbffr
Desculpe, este trabalho não está disponível em sua região

Machine Learning Specialist

Runtalent

Hoje

Trabalho visualizado

Toque novamente para fechar

Descrição Do Trabalho

Engenheiro de Machine Learning Senior

Requisitos:

Experiência sólida com engenharia de software aplicada a dados e machine learning.

Proficiência em Python e frameworks como PySpark, Pandas, Scikit-learn ou similares.

Experiência com ferramentas e serviços AWS, como S3, Lambda, Step Functions, Glue, Athena, SageMaker ou ECS. Conhecimento em MLOps e CI/CD para pipelines de dados e modelos.

Experiência com orquestração de workflows.

Capacidade de escrever código limpo, modular e testável.

Diferenciais:

Experiência com infraestrutura como código (Terraform, CloudFormation).

Participação em projetos de ML em produção com foco em confiabilidade e rastreabilidade.

Responsabilidades principais:

Projetar e implementar pipelines de validação de dados e avaliação de modelos em ambiente cloud (AWS).

Integrar dados e métricas de avaliação em um fluxo automatizado e auditável.

Modularizar o pipeline para facilitar reuso, testes e manutenção.

Trabalhar em colaboração com times de Data Science, Engenharia de Dados e Produto.

Garantir boas práticas de versionamento, logging, monitoramento e testes automatizados.

Propor melhorias contínuas na arquitetura de dados e nos processos de validação.

Modelo de atuação: Remoto

---

Caso seja do seu interesse, envie o seu CV ou indique um amigo no portal acesse


OBS.: Favor enviar currículo em português.


Siga nossas redes sociais:


- LinkedIn:

- Instagram:

- Site:


#VemSerRunner!

Desculpe, este trabalho não está disponível em sua região

Machine Learning Engineer

São Paulo, São Paulo R$80000 - R$120000 Y Blip

Hoje

Trabalho visualizado

Toque novamente para fechar

Descrição Do Trabalho

Descrição da vaga

Os Machine Learning Engineers da Blip trabalham na implementação e otimização de soluções de inteligência artificial e machine learning aplicadas ao desenvolvimento de sistemas de IA conversacional. Trabalham em conjunto com Data Scientists e AI Engineers para alcançar objetivos comuns, contribuindo na integração de modelos de IA em APIs e aplicações em produção.

Responsabilidades e atribuições

  • Trabalhar de forma colaborativa com equipes de Machine Learning Engineers, Data Scientists e AI Engineers na construção e integração de modelos avançados de IA em APIs e aplicações de produção;
  • Identificar e implementar melhorias em pipelines de RAG, focando na otimização da geração e recuperação de conhecimento, com orientação mínima;
  • Contribuir para a definição de estratégias e melhores práticas no desenvolvimento e implantação de modelos de IA, incluindo otimização de processos, evolução de tecnologias e análise de riscos;
  • Trabalhar em estreita colaboração com as partes interessadas para garantir que os modelos e sistemas de IA atendam aos requisitos do negócio e sejam escaláveis a longo prazo;
  • Realizar avaliações detalhadas de modelos de Machine Learning e soluções de IA, recomendando e implementando ajustes para melhorar a performance e a precisão dos resultados;
  • Revisar código dos pares e fornecer feedbacks construtivos;
  • Debugar e solucionar problemas técnicos de moderada complexidade;
  • Identificar e comunicar potenciais riscos técnicos e impedimentos;
  • Monitorar stack features usando ferramentas de observabilidade interna;
  • Entregar pequenas funcionalidades e melhorias com mínima orientação;
  • Mentorar outros membros da equipe;

Requisitos e qualificações

  • 2+ anos de experiência como Machine Learning Engineer;
  • Conhecimento intermediário em Machine Learning, NLP e LLMs, com experiência prática no desenvolvimento e aplicação desses modelos em ambiente de produção;
  • Conhecimento intermediário de RAG (Retrieval-Augmented Generation);
  • Experiência profissional em Python;
  • Experiência profissional com bancos de dados vetoriais e técnicas avançadas de indexação e recuperação de dados;
  • Experiência profissional na avaliação e monitoramento de modelos de ML, com habilidades para identificar e corrigir falhas de desempenho;
  • Experiência profissional no desenvolvimento de APIs REST utilizando frameworks como FastAPI, incluindo a criação de endpoints robustos para integração de modelos de I.A;
  • Experiência em trabalhar de forma independente e colaborativa, com forte habilidade para resolver problemas complexos e otimizar sistemas existentes;
  • Experiência básica com desenho de soluções de IA com GenAI;
  • Experiência básica com desenvolvimento de pipelines de dados (ETL) em ambiente de Big Data;
  • Experiência básica com MLOps;
  • Experiência básica com ferramentas de observabilidade como Grafana;
  • Familiaridade com execução e reprodução de análises exploratórias de dados;
  • Familiaridade com experimentação com soluções de GenAI (soluções Agentic, e afins);
  • Experiência básica com desenho de arquitetura de soluções de IA que sejam eficientes e escaláveis.
  • Conhecimento de controle de versão como Git;
  • Experiência trabalhando em equipe remota;
  • Mentalidade proativa de aprendizado;
  • Capacidade de aceitar e incorporar feedbacks efetivamente;
  • Conhecimento intermediário de Cloud (AWS, Azure ou GCP);
  • Conhecimento intermediário de estrutura de pipelines de dados.

Informações adicionais

Nada Básico Que Amamos
Sua Experiência no Dia a Dia

  • Horário Flexível: Mais autonomia para organizar sua rotina com equilíbrio e responsabilidade.
  • Modelos de Trabalho Flexíveis: Remoto, híbrido ou presencial, conforme a necessidade da função.
  • No Dress Code: Liberdade para ser quem você é, sem formalidades.
  • Auxílio Home Office e Blip Setup: Suporte financeiro para montar (ou melhorar) seu espaço de trabalho remoto.
  • Day Off de Aniversário: Um dia de folga no mês do seu aniversário para comemorar como quiser.
  • Blip Recharge: São 5 dias de folga remunerada por ano, para cargos que não fazem registro de ponto, pensados para equilibrar a jornada.

Bem-estar e Qualidade de Vida

  • Vale Alimentação ou Refeição: R$ 1.144,00 mensais, sem desconto e creditado inclusive nas férias e licenças.
  • Vale Transporte: Disponível conforme necessidade de deslocamento.
  • Wellhub (Gympass): Acesso a academias, apps de bem-estar e atividades físicas, também para dependentes.
  • Convênio SESC: Acesso à cultura, lazer, esportes, hotéis, colônia de férias e mais.

Saúde Física e Emocional

  • Plano de Saúde (Amil): Cobertura nacional, quarto privativo para você e seus dependentes, com desconto apenas de coparticipação.
  • Plano Odontológico: Cobertura nacional para você e seus dependentes, com três opções de planos, e desconto integral do valor do plano escolhido.
  • Conexa Saúde: Plataforma de atendimento psicológico online.
  • Seguro de Vida: Cobertura equivalente a 24 vezes o seu salário mensal.

Família, Parentalidade e Apoio

  • Licença Maternidade Estendida: 180 dias para viver o início dessa nova fase com tranquilidade.
  • Licença Paternidade Estendida: 30 dias para estar presente e fortalecer vínculos.

PRAZER, SOMOS A BLIP

Aqui oferecemos uma experiência surpreendente, rápida e inteligente para os seus clientes, porque
Blip é o futuro
Somos a
Blip
, uma plataforma de interações inteligentes, onde as empresas se encontram com clientes em vários canais de comunicação, como WhatsApp, Instagram, Facebook ou no chat do seu site.

Aqui nós temos um time de
Blippers
que vive inovação no dia dia, com um ponto de vista único para evoluir as jornadas de comunicação, sempre com confiança para aprender mais E no nosso próprio ritmo, vamos muito mais longe

A Blip é
feita de pessoas para pessoas
Somos
especialistas, inquietos e bem-humorados
e é assim que nós entregamos conversas no ritmo das pessoas. Somos líderes de mercado na América Latina, com Blippers atuando em vários lugares do mundo, sempre com confiança para ir longe

Valorizamos pessoas em primeiro lugar e por isso consideramos todos os grupos de diversidade nas nossas vagas.
E se você é uma Pessoa com Deficiência (PcD) ou Neurodivergente, saiba que todas as vagas da Blip também são inclusivas Estamos esperando sua inscrição

Desculpe, este trabalho não está disponível em sua região

Machine Learning Engineer

Rio de Janeiro , Rio de Janeiro R$330000 - R$440000 Y Sardine

Hoje

Trabalho visualizado

Toque novamente para fechar

Descrição Do Trabalho

Who We Are
We are a leader in fraud prevention and AML compliance. Our platform uses device intelligence, behavior biometrics, machine learning, and AI to stop fraud before it happens. Today, over 300 banks, retailers, and fintechs worldwide use Sardine to stop identity fraud, payment fraud, account takeovers, and social engineering scams. We have raised $145M from world-class investors, including Andreessen Horowitz, Activant, Visa, Experian, FIS, and Google Ventures.

Our Culture

  • We have hubs in the Bay Area, NYC, Austin, and Toronto. However, we maintain a remote-first work culture. #WorkFromAnywhere
  • We hire talented, self-motivated individuals with extreme ownership and high growth orientation.
  • We value performance and not hours worked. We believe you shouldn't have to miss your family dinner, your kid's school play, friends get-together, or doctor's appointments for the sake of adhering to an arbitrary work schedule.

Location:
Remote - Brazil

  • To be considered for this position, you must reside in one of the following cities:

  • São Paulo: São Paulo, Campinas, São José dos Campos

  • Rio de Janeiro: Rio de Janeiro
  • Minas Gerais: Belo Horizonte
  • Paraná: Curitiba
  • Santa Catarina: Florianópolis

About The Role
We're on the lookout for a Machine Learning Engineer to spearhead the evolution of our device intelligence and fingerprinting systems. This isn't just a role; it's a chance to lead groundbreaking projects that directly combat fraud and enhance security for millions.

What You'll Do

  • Design and refine backend services using Golang to process and analyze device data, ensuring robustness and scalability.
  • Collaborate closely with software engineers, product managers, and other stakeholders to integrate machine learning capabilities seamlessly into our products.
  • Develop sophisticated algorithms leveraging high-entropy signals and probabilistic matching to revolutionize device identification.
  • Dive into vast datasets to uncover insights, boosting the accuracy and reliability of our systems.
  • Apply advanced machine learning models to enhance device recognition and effectively manage uncertainties.
  • Maintain the highest standards of privacy and security, aligned with industry best practices and regulations.
  • Foster a culture of continuous learning, and document processes clearly to ensure consistency across the team.

What We're Looking For

  • 5+ years of experience in software engineering, with a focus on backend development; proficiency in Go or a similar language is essential.
  • Bachelor's or Master's in Computer Science, Engineering, or a related discipline.
  • Hands-on experience with applied machine learning and data-informed optimization, working with large-scale datasets using tools like PyTorch and Scikit-learn.
  • Proficient in SQL for querying and analyzing large datasets.
  • Comfortable working with both relational and non-relational databases.
  • Proficient in English - from casual chats to formal reports.

Extra Points For

  • A strong understanding of cybersecurity principles, especially in device identification and fraud prevention.
  • Experience managing cloud infrastructure (AWS, Google Cloud, or Azure).
  • Knowledge of containerization tools (Docker, Kubernetes) and CI/CD pipelines.
  • Understanding of modern browser APIs and high-entropy data collection techniques.

Compensation:
Base pay range of $330,000 - R440,000+ equity with tremendous upside potential + Attractive benefits

The compensation offered for this role will depend on various factors, including the candidate's location, qualifications, work history, and interview performance, and may differ from the stated range.

Benefits We Offer

  • Generous compensation in cash and equity
  • Early exercise for all options, including pre-vested
  • Work from anywhere: Remote-first Culture
  • Flexible paid time off, Year-end break, Self care days off
  • Health insurance, dental, and vision coverage for employees and dependents - US and Canada specific
  • 4% matching in 401k / RRSP - US and Canada specific
  • MacBook Pro delivered to your door
  • One-time stipend to set up a home office — desk, chair, screen, etc.
  • Monthly meal stipend
  • Monthly social meet-up stipend
  • Annual health and wellness stipend
  • Annual Learning stipend
  • Unlimited access to an expert financial advisory

Join a fast-growing company with world-class professionals from around the world. If you are seeking a meaningful career, you found the right place, and we would love to hear from you.

To learn more about how we process your personal information and your rights in regards to your personal information as an applicant and Sardine employee, please visit our
Applicant and Worker Privacy Notice
.

Desculpe, este trabalho não está disponível em sua região

Engenheiro Machine Learning

Brasília, Distrito Federal R$90000 - R$120000 Y Bluesix Consultoria

Hoje

Trabalho visualizado

Toque novamente para fechar

Descrição Do Trabalho

Remoto - Modelo PJ

Machine Learning Engineer Sr. (1 vaga)

Requisitos:

  • Experiência sólida em deploy de modelos de ML em produção.

  • Python avançado + frameworks (Scikit-learn, TensorFlow, PyTorch).

  • Vivência com MLFlow, Databricks e CI/CD para modelos.

Interessados, entrem em contato ou enviem o currículo diretamente para

Desculpe, este trabalho não está disponível em sua região

Machine Learning Engineer

Paulínia, São Paulo R$90000 - R$120000 Y Bastian Solutions

Hoje

Trabalho visualizado

Toque novamente para fechar

Descrição Do Trabalho

Job Overview
The Machine Learning Engineer will work with Bastian Solutions' R&D team to produce industry leading Autonomous Vehicle and Robotic solutions for the Material Handling Industry. With a current team size of approximately 70 members, distributed between our Boise, Dallas, and Indianapolis offices, the Bastian R&D team is composed of industry leading experts with cross-discipline skillsets and backgrounds. The Machine Learning Engineer will work alongside like-minded engineers in an Agile development environment and will have the opportunity to engage in every stage of the R&D process to bring new products to the market. This includes research, innovation, design, prototype development, and field deployment of alpha and beta systems.

The Machine Learning Engineer is a specialist in Artificial Intelligence technology with a strong foundation in software engineering. You have a passion for research and stay appraised of the latest cutting-edge ML technologies. You have a deep understanding of how to select, create, and apply AI architectures to novel real-world problems. You understand the strategies for working with large amounts of data and have experience using MLOps tools and frameworks.

As a Machine Learning Engineer, you supplement your AI expertise with a strong focus on software architecture and system design. Our team is focused on creating products that interact with the physical world to solve real-world problems. You bring your strong software foundation to the table by creating supporting libraries, tools, and frameworks to deliver our AI technology in a polished product package. You work with product managers and customer-facing teams to deeply understand the real-world challenges we face. You interface with other multi-disciplinary engineers to help specify and design the hardware that enables our products. Most importantly, you are excited to work alongside your peers in a highly collaborative environment.

Job Functions

  • Design state of the art neural networks for vision, grasping, and robot autonomy tasks.
  • Develop software systems to interface neural networks with hardware to solve real-world physical problems.
  • Select and implement cutting edge neural network algorithms directly from the latest research.
  • Read research papers, attend conferences, and share the latest advances in machine learning.
  • Supervise model and dataset development across multiple projects, teams, and geographical locations.
  • Develop new training and evaluation techniques to enhance an end-to-end neural network training and evaluation pipeline.
  • Develop new features for a self-optimizing, real and synthetic, data generation pipeline.
  • Develop real time inference applications for embedded and mobile devices.
  • Develop front and back-end systems for client/server inference.
  • Create simulated environments for synthetic data generation.
  • Evaluate and recommend the latest hardware for vision and robotic platforms.
  • Maintain clear and transparent communication with cross-functional team, vendors, and clients.
  • Develop robust software utilizing industry best practices for code styling, version control, and development processes
  • Engage with Software Development Life Cycle processes, including scoping, architecture creation, design reviews, peer programming, and collaboration with a multidisciplinary team.

Travel Requirements

  • Up to 10% overnight travel (Travel expenses paid by Bastian Solutions)

Preferred Skills And Required Qualifications

  • Bachelor's Degree in Computer Science, Computer Engineering or related technical field
  • Preferred Masters or PhD in engineering with computer vision or neural network thesis/dissertation

CV/ML

  • Experience developing computer vision software in C++ and Python, including algorithm design and systems software development
  • Experience with machine learning, Bayesian filtering, information theory and/or 3D geometry
  • Experience in developing large scale neural networks using PyTorch, Tensorflow, Keras, etc.
  • Understanding of applied mathematics, numerical optimization, and Object/Pattern Recognition
  • Experience with 2D and 3D Computer Vision algorithms
  • Experience in dataset development for computer vision tasks, including synthetic data generation
  • Experience with MLOps

Software Development

  • Experience developing with Linux (Ubuntu) OS
  • Ability to write proficient C++ and Python code
  • Experience with Git and GitFlow process, including branching, pull-request, and release processes
  • Experience with Software Engineering best practices
  • Experience with unit testing, integration testing, deployment & support practices
  • Strong software architecture background
  • Exposure to Autonomous Vehicles, Robotics, Automation, ROS/ROS2 is a plus
  • Must be eligible to work in the USA long term without sponsorship
To learn more about us, click here

About Bastian Solutions
Bastian Solutions, a Toyota Advanced Logistics company, is an independent material handling and robotics system integrator providing automated solutions for distribution, manufacturing, and order fulfillment centers around the world. Our team specializes in consulting, system design, project management, maintenance, and installation, while sourcing the best equipment and automation technology. We take great pride in providing exceptional service and flexibility to our customers.

In addition to exciting work at a growing company, we offer the following benefits:

  • Health, Dental, and Vision Insurance
  • 401(k) Retirement Plan with a company match
  • Vacation/Holiday Pay
  • Tuition Reimbursement
  • Flexible Work Schedules
  • Volunteer Work
  • Professional Associations, Conferences and Subscriptions
  • Company Meetings & Events

Bastian Solutions does not work outside recruiting agencies. No solicitation phone calls please.

Desculpe, este trabalho não está disponível em sua região
Seja o primeiro a saber

Sobre o mais recente Machine learning Empregos em Brasil !

Machine Learning Engineer

Tamboré, São Paulo R$90000 - R$120000 Y Equifax

Hoje

Trabalho visualizado

Toque novamente para fechar

Descrição Do Trabalho

Funções que serão desempenhadas:

  • Projetar, construir e implementar sistemas complexos para treinar e executar modelos de aprendizado de máquina com princípios arquitetônicos sólidos;
  • Entender os objetivos de negócios e implementar modelos para alcançá-los, juntamente com métricas para acompanhar seu progresso;
  • Atuar em parceria com as áreas de negócio, incluindo: Produtos, Sucesso do Cliente e Vendas/Marketing;
  • Aplicar as melhores práticas de desenvolvimento, testes e demonstrar excelentes habilidades de software para produzir soluções sustentáveis, escalonáveis e de qualidade.

Requisito
s necessárias:

  • Ensino Superior em cursos voltados para Tecnologia;
  • Inglês avançado (diferencial);
  • Amplo conhecimento em pelo menos uma das principais linguagens de programação (Python, Java ou Scala);
  • Conhecimento em Containerização (Docker) ;
  • Conhecimento de computação em nuvem (Azure, AWS ou GCP);
  • Processamento Distribuído e Paralelo (Spark, Dask, etc.);
  • Orquestração e fluxos (Prefect, Airflow, Kubeflow, etc.);
  • Pipelines CI/CD (Gitlab, Github, Argo, etc.).

ATENÇÃO
Para essa vaga, o modelo de trabalho é híbrido, sendo presencial três vezes por semana em nosso escritório em Barueri/SP - por isso, o profissional precisa residir em São Paulo ou região de fácil deslocamento.

Desculpe, este trabalho não está disponível em sua região

Machine Learning Engineers

Rio de Janeiro , Rio de Janeiro R$5131200 - R$7694400 Y Remotely Works

Hoje

Trabalho visualizado

Toque novamente para fechar

Descrição Do Trabalho

We are looking for experienced Machine Learning Engineers to join Remotely's global talent network.

Many of our clients are currently looking for this type of profile, so we'd love to have you in our network

Responsibilities

  • Build and deploy machine learning models in production.
  • Collaborate with engineering teams to integrate ML into products.
  • Analyze and improve model performance.
  • Work with large and unstructured datasets.

Requirements

  • 5+ years of experience in Machine Learning / AI.
  • Strong skills in Python, TensorFlow, PyTorch, Scikit-learn.
  • Experience with MLOps and cloud platforms (AWS, GCP, Azure).
  • Fluent English (mandatory).
  • Excellent communication and teamwork.

Nice to have: Generative AI (LLMs), Startup experience.

Apply here:

Job Type: Full-time

Pay: R$428, R$642,000.00 per month

Desculpe, este trabalho não está disponível em sua região

Machine Learning Engineer

São Paulo, São Paulo R$60000 - R$120000 Y CloudWalk, Inc.

Hoje

Trabalho visualizado

Toque novamente para fechar

Descrição Do Trabalho

Who we are:

CloudWalk is a fintech company reimagining the future of financial services. We are building intelligent infrastructure powered by AI, blockchain, and thoughtful design. Our products serve millions of entrepreneurs across Brazil and the US every day, helping them grow with tools that are fast, fair, and built for how business actually works. Learn more at .

Who We're Looking For:

We're looking for a Machine Learning Engineer to own and evolve our distributed training pipeline for large language models. You'll work inside our GPU cluster to help researchers train and scale foundation models using frameworks like
Hugging Face Transformers, Accelerate, DeepSpeed, FSDP,
and others. Your focus will be distributed training: from designing sharding strategies and multi-node orchestration to optimizing throughput and managing checkpoints at scale.

This role is
not research
- it's about building and scaling the systems that let researchers move fast and models grow big. You'll work closely with MLOps, infra, and model developers to make our training runs efficient, resilient, and reproducible.

What You'll Do:

  • Own the architecture and maintenance of our distributed training pipeline;
  • Train LLMs using tools like DeepSpeed, FSDP, and Hugging Face Accelerate;
  • Design and debug multi-node/multi-GPU training runs (Kubernetes-based);
  • Optimize training performance: memory usage, speed, throughput, and cost;
  • Help manage experiment tracking, artifact storage, and resume logic;
  • Build reusable, scalable training templates for internal use;
  • Collaborate with researchers to bring their training scripts into production shape.

What We're Looking For:

  • Expertise in distributed training: Experience with DeepSpeed, FSDP, or Hugging Face Accelerate in real-world multi-GPU or multi-node setups;
  • Strong PyTorch background: Comfortable writing custom training loops, schedulers, or callbacks;
  • Hugging Face stack experience: Transformers, Datasets, Accelerate - you know the ecosystem and how to bend it;
  • Infra literacy: You understand how GPUs, containers, and job schedulers work together. You can debug cluster issues, memory bottlenecks, or unexpected slowdowns;
  • Resilience mindset: You write code that can checkpoint, resume, log correctly, and keep running when things go wrong;
  • Collaborative builder: You don't mind digging into other people's scripts, making them robust, and helping everyone train faster.

Bonus Points:

  • Experience with Kubernetes-based GPU clusters and Ray;
  • Experience with experiment tracking (MLflow, W&B);
  • Familiarity with mixed precision, ZeRO stages, model parallelism;
  • Comfort with CLI tooling, profiling, logging, and telemetry;
  • Experience with dataloading bottlenecks and dataset streaming.

How We Hire:

  • Online assessment: technical logic and fundamentals (Math/Calculus, Statistics, Probability, Machine Learning/Deep Learning, Code)
  • Technical interview: deep dive into distributed training theory and reasoning (no code)
  • Cultural interview
  • If you are not willing to take an online quiz, do not apply.

If you've trained LLMs before - or helped others do it better - this role is for you.
Even if you don't check every box, if you're confident working with distributed compute and real-world LLM workloads, we want to hear from you.

Desculpe, este trabalho não está disponível em sua região
 

Locais próximos

Outros empregos perto de mim

Indústria

  1. workAdministrativo
  2. ecoAgricultura e Florestas
  3. schoolAprendizagem e Estágios
  4. apartmentArquitetura
  5. paletteArtes e Entretenimento
  6. paletteAssistência Médica
  7. diversity_3Assistência Social
  8. diversity_3Atendimento ao Cliente
  9. flight_takeoffAviação
  10. account_balanceBanca e Finanças
  11. spaBeleza e Bem-Estar
  12. shopping_bagBens de grande consumo (FMCG)
  13. restaurantCatering
  14. point_of_saleComercial e Vendas
  15. shopping_cartCompras
  16. constructionConstrução
  17. supervisor_accountConsultoria de Gestão
  18. person_searchConsultoria de Recrutamento
  19. person_searchContábil
  20. brushCriativo e Digital
  21. currency_bitcoinCriptomoedas e Blockchain
  22. child_friendlyCuidados Infantis
  23. shopping_cartE-commerce e Redes Sociais
  24. schoolEducação e Ensino
  25. boltEnergia
  26. medical_servicesEnfermagem
  27. foundationEngenharia Civil
  28. electrical_servicesEngenharia Eletrotécnica
  29. precision_manufacturingEngenharia Industrial
  30. buildEngenharia Mecânica
  31. scienceEngenharia Química
  32. biotechFarmacêutico
  33. gavelFunção Pública
  34. gavelGerenciamento
  35. gavelGerenciamento de Projetos
  36. gavelHotelaria e Turismo
  37. smart_toyIA e Tecnologias Emergentes
  38. home_workImobiliário
  39. handymanInstalação e Manutenção
  40. gavelJurídico
  41. gavelLazer e Esportes
  42. clean_handsLimpeza e Saneamento
  43. inventory_2Logística e Armazenamento
  44. inventory_2Manufatura e Produção
  45. campaignMarketing
  46. local_hospitalMedicina
  47. local_hospitalMídia e Relações Públicas
  48. constructionMineração
  49. medical_servicesOdontologia
  50. sciencePesquisa e Desenvolvimento
  51. local_gas_stationPetróleo e Gás
  52. emoji_eventsRecém-Formados
  53. groupsRecursos Humanos
  54. securitySegurança da Informação
  55. local_policeSegurança Pública
  56. policySeguros
  57. diversity_3Serviços Sociais
  58. directions_carSetor Automotivo
  59. wifiTelecomunicações
  60. psychologyTerapia
  61. codeTI e Software
  62. local_shippingTransporte
  63. local_shippingVarejo
  64. petsVeterinária
Ver tudo Machine learning Empregos